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Abstract

HIV-Associated Neurocognitive Disorder (HAND) is the most common constellation of cognitive 

dysfunctions in chronic HIV infected patients age 60 or older in the U.S. Only few published 

methods assist in distinguishing HAND from other forms of age-associated cognitive decline, such 

as Mild Cognitive Impairment (MCI). In this report, we proposed a data-driven, nonparameteric 

model to identify morphometric patterns separating HAND from MCI due to non-HIV conditions 

in this older age group. This model enhanced the potential for group separation by combining a 

smaller, longitudinal data set containing HAND samples with a larger, public data set including 

MCI cases. Using cross-validation, we trained a linear model on healthy controls to harmonize the 

volumetric scores extracted from MRIs for demographic and acquisition differences between the 

two independent, disease-specific data sets. Next, we identified patterns distinguishing HAND 

from MCI via a group sparsity constrained logistic classifier. Unlike existing approaches, our 

classifier directly solved the underlying minimization problem by decoupling the minimization of 

the logistic regression function from enforcing the group sparsity constraint. The extracted 

patterns consisted of eight regions that distinguished HAND from MCI on a significant level while 

being indifferent to differences in demographics and acquisition between the two sets. Individually 

selecting regions through conventional morphometric group analysis resulted in a larger number of 

regions that were less accurate. In conclusion, simultaneously analyzing all brain regions and time 

points for disease specific patterns contributed to distinguishing with high accuracy HAND-related 

impairment from cognitive impairment found in the HIV uninfected, MCI cohort.
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Introduction

HIV-Associated Neurocognitive Disorder (HAND) affects upwards of 50% of HIV infected 

(HIV+) individuals [Heaton et al. (2011); McArthur et al. (2010)] and is linked to decreased 

everyday function, reduced adherence to therapy, and increased mortality [Heaton et al. 

(2011); Ettenhofer et al. (2009); Heaton et al. (2004)]. Distinguishing HAND from other 

forms of age-associated cognitive compromise, such as those broadly termed Mild Cognitive 

Impairment (MCI) and often due to Alzheimer’s disease [Brew et al. (2009); Cohen et al. 

(2015)], is an emerging clinical dilemma as the neuropathogenic mechanisms associated 

with HIV and aging are mostly unknown. The success of combination antiretroviral therapy 

(cART) has led to a rapid rise in the number of chronic HIV+ patients over the age of 60 in 

the U.S. [Kirk and Goetz (2009)]. Aging HAND patients are at risk of also developing age-

related cognitive decline due to Alzheimer’s disease. However, clinicians currently do not 

have assessment tools to perform a differential diagnosis on HAND patients for early 

treatment of age-associated cognitive impairments.

To enhance separation of these overlapping conditions, an increasing number of 

neuroimaging studies have been investigating the independent and interactive effects of HIV 

and aging [Towgood et al. (2012); Chang et al. (2013); Cysique et al. (2013); Thomas et al. 

(2013); Liu and Press (2013); Ances and Hammoud (2014); Pfefferbaum et al. (2014); Holt 

et al. (2012); Cysique and Brew (2014)]. However, imaging studies published on aging with 

chronic HIV infection limited analysis to parametric models assuming that groups 

comprising subjects with similar demographics are homogeneous [Cysique et al. (2013); 

Thomas et al. (2013); Liu and Press (2013); Ances et al. (2012); Chang et al. (2011); 

Cardenas et al. (2009); Jahanshad et al. (2012); McMurtray et al. (2008); Nir et al. (2014); 

Sullivan and Pfefferbaum (2003)]. The homogeneity of variance assumption was generally 

not met due to the notable variation of brain anatomy even in the normal 

population[Pfefferbaum et al. (2013)]; thus most ongoing investigations are limited to small 

sizes of carefully selected samples. In addition, earlier studies were restricted to individuals 

under the age of 60 limiting the relevance of the findings to older cohorts, who are at 

increased risk for other neurodegenerative disorders [Valcour et al. (2004)]. To identify 

morphometric patterns distinguishing HAND from MCI in this older age group, we now 

propose a data-driven, nonparameteric model that enhances the potential for discovery by 

complementing a smaller, longitudinal MRI data set containing HAND samples from the 

UCSF HIV Over 60 Cohort Study (UHES) with a larger, publicly available data set from the 

Alzheimer’s Disease Neuroimaging Initiative (ADNI), which includes MCI samples.

Identifying morphometric group differences based on independently collected MR data sets 

were subject to differences in MR acquisition, clinical scoring, and demography 

characteristics [Han et al. (2006); Stonnington et al. (2008); Focke et al. (2011); Simmons et 
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al. (2011); Jovicich et al. (2013); Westman et al. (2011)]. Commonly, a general additive 

model has been applied to the morphometric measurements to regress out the cohort specific 

factors [Bartsch et al. (2014); Deoni et al. (2008); van Erp et al. (2015); Pfefferbaum et al. 

(2015)]. For each region, the residual scores were then applied to statistical tests to 

investigate morphometric group differences, such as in [Pfefferbaum et al. (2013)]. To refine 

analysis on an individual subject level, the medical imaging community has frequently relied 

on sparse classifiers [Xiang et al. (2014); Rosa et al. (2015)]. From the large set of image 

features, sparse classifiers pick a few scores informative with respect to distinguishing 

cohorts under investigation. This approach enabled extraction of disease specific patterns 

from a relatively small number of samples [Ye et al. (2012); Liu et al. (2012)], i.e., the 

number of samples was much smaller than the number of measurements extracted from the 

images.

The selection process of sparse classifiers counts the number of features deemed as 

influential via the l0-“norm” and then determines a solution so that the count is below a 

predefined threshold [Yamashita et al. (2008); Carroll et al. (2009); Rao et al. (2011); Lv et 

al. (2015)]. A generalization of this concept are group sparsity models, which enforce 

sparsity on groups of image features [Ng et al. (2010); Wu et al. (2010); Ryali et al. (2010)]. 

Grouping can be used to model application specific constraints, such as the similar effect of 

MCI and HAND on each cerebral hemisphere. To solve the underlying minimization 

problem, however, these methods relaxed the feature selection process from (group) 

cardinality constraints to weighting features by replacing, for example, the l0-“norm” with 

the l1-norm or in the case of group cardinality constraints with the l2-norm [Meier et al. 

(2008); Friedman et al. (2010); Li et al. (2012); Yuan et al. (2012)]. The solution of those 

methods related to the original sparse problem only under specific assumptions, e.g., 

compressed sensing [Candès et al. (2006)], which generally do not hold for medical image 

applications. In addition, the number of measures selected by the classifier depended on the 

training data due to the soft selection scheme. Confining selection to a predefined number 

required choosing measures whose weight was above a certain threshold. This practice, 

however, has been controversial because classification depends on the measures below the 

threshold, and the relevance of those weights with respect to the effects of disease on 

morphometric features were unclear [Haufe et al. (2014); Sabuncu (2014)]. Alternatively, the 

upper bound associated with the sparse constraint was tuned with respect to a training data 

set so the classifier returned the wanted number of measures [Vounou et al. (2012); Zhang 

and Shen (2012); Ma and Huang (2008); Zhang et al. (2012)]. The tuning, however, was data 

dependent, i.e., the upper bound generally needed to be adjusted for each training set to 

enforce the same number of scores to be selected. Comparing patterns of different subsets of 

even the same data set, i.e., folds, is thus not trivial as each pattern is the solution to a 

minimization problem, whose sparsity constraint is unique to a fold. Our approach [Zhang et 

al. (2016)] avoided these issues by working on the original, group sparsity constrained, 

logistic classification model defined by the the l0-“norm”. By determining a local solution to 

this non-convex and non-continuous minimization problem, our method directly selected 

patterns (without thresholding or changing upper bounds) that were potentially meaningful 

image markers for distinguishing diseases. In [Zhang et al. (2016)], we compared the 

accuracy of our algorithm to a model constrained by (non-group) sparsity, and an approach 
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that relaxed sparsity constraints via the l1- or l2-norm and then determined the optimal 

global solutions for the relaxed model. All methods were applied to a data set containing a 

ground-truth diagnosis, i.e., the cine MRI images of adults with and without reconstructive 

surgery of tetralogy of Fallot (TOF) during infancy. In accordance with the cardiac literature, 

our method correctly identified the right ventricle to be most impacted by TOF and generally 

obtained statistically significant higher classification accuracy than the alternative 

approaches.

To indentify image markers destinguishing MCI from HAND in patients of age 60 and older, 

this article describes our findings when applying our group sparsity constraint, logistic 

classifier to a dataset, which combined the UHES data set containing aging HAND cases (n 
= 15) and a matched healthy control group (n = 21) with a larger, publicly available, and 

demographically matched subset of the ADNI project consisting of MCI cases (n = 80) and 

healthy controls (n = 26) (see also Figure 1). Each sample was characterized by the region-

of-interest (ROI) specific volume scores of baseline and follow-up. As the data associated 

with each disease were collected in separate studies, we regressed out demographic and 

acquisition differences between UHES and ADNI from the volume scores to ensure that the 

patterns identified by our algorithm were impartial to those differences. We then used the 

grouping capabilities of our method to combine the regressed scores across hemispheres and 

time points associated with the same ROI to account for the interdependencies of ROI-

specific measures, i.e., the change between baseline and follow-up scores of the same ROI 

and subject was small (average correlation across all regions r=0.93) and neither HAND nor 

MCI expected to have an asymmetric effect on brain structure.

To the best of our knoweldge, group sparsity was the simplest mechanism with respect to 

logistic regression models to enforce the assumptions of bilateral and temporal consistency. 

Enforcing these assumptions in (non-group) sparsity constraint models, such as [Ryali et al. 

(2010)], required training the model on summary scores of our regional volume measures, 

e.g., compute the average volume of a region across time and brain hemispheres. This would 

have reduced the resolution of the scores available to our method making our approach less 

reliable in general. Alternatively, the simpler, sparsity constraint model could have been 

trained on the original volume scores and ignored the assumptions. However, the resulting 

patterns would then be difficult to interpret clinically as our method most likely would have 

selected only one hemisphere of an impacted structure as the other hemisphere of that region 

would not add significantly more information to automatically distinguish both diseases. A 

similar argument applied to regions selected at baseline or follow-up. The need for 

structured sparsity constraint beyond group sparsity, such as tree structured sparsity [Chen 

and Huang (2014)], would have been useful, for example, if our analysis included scores 

across several regions, such as the volume of the frontal lobe. However, this would have also 

increased the complexity of our model making it more difficult to solve, i.e., the 

convergence of our method was unknown.

We measured the accuracy of our algorithm on this data set via five-fold cross-validation and 

then infered from the resulting confusion matrix the significance of the sparse, regional 

patterns (or image biomarkers) for differentiating MCI from HAND. We first parameterized 

a linear regression model based on the healthy controls of the training set and then applied it 
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to all samples to reduce the prevalence of factors associated with differences in data 

collection while aiming to preserve the differences between MCI and HAND. Based on the 

resulting residual score, we trained the group-sparsity constrained logistic classifier on the 

diseased samples. To avoid biasing the results towards a pattern with a specific number of 

regions, we automatically determined the number of regions to be selected via parameter 

exploration. On the test set, we then measured the significance of the patterns extracted by 

the resulting ensemble of classifiers [Rokach (2010)] in distinguishing the diseased samples 

from both data sets. We checked the neutrality of those patterns to differences in data 

collection between UHES and ADNI by computing their accuracy in correctly assigning 

healthy controls to the two data sets.

Our approach was to identify anatomical patterns distinguishing HAND from MCI via the 

following novel study design:

• We examined the differences between two diseases by fusing two independently 

collected data sets, each only containing cases of one disease. We ensured that 

the significant findings of our analysis represented differences between the two 

disease groups by demonstrating that the patterns were impartial, i.e., not 

significant, to differences between control groups of the two data sets.

• Using cross-validation, we parameterized a linear regression model for data 

harmonization based on the healthy controls of the training set and then applied 

it to test sets for further analysis. Although this method has been common 

practice in the machine learning community, most neuroimaging studies 

configured those linear models on a subset of controls that were then also used 

for analysis [Bartsch et al. (2014); Deoni et al. (2008); van Erp et al. (2015)]. 

Using the same data for training and testing models, however, increased the risk 

for reporting overly optimistic findings [Coombes et al. (2007); Taylor et al. 

(2008)].

• We proposed an algorithm that determined a group sparsity constrained local 

minimum to a logistic classification problem. Extending [Zhang and Pohl 

(2015); Zhang et al. (2016)], we applied the approach to neuroimaging data for 

the first time. The approach simultaneously searched all regions and time points 

for patterns distinguishing HAND from MCI. In doing so, we identified patterns 

that were more accurate than those defined by individually selecting regions via 

more common morphometric analysis.

Materials and Methods

Samples

The Memory and Aging Center at University of California, San Francisco, provided imaging 

data of 15 individuals diagnosed with HIV-Associated Neurocognitive Disorder (HAND) 

and 22 healthy subjects. Informed consent was obtained from all participants, and the 

experimental protocols were approved by the institutional ethics board. All subjects were 

between the ages of 60 and 70. Two MRI scans were acquired of each subject, with the 

scans at least 10 months apart, using 3T Siemens Magnetom Trio Tim scanners. Each 
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subject underwent standardized comprehensive neurological and medical evaluations, 

including a complete neurological examination, medical history with HIV history, 

medications, family history, social history, laboratory tests, and a neuropsychological testing 

battery augmented with tests of psychomotor (grooved pegboard task) and motor speed 

(finger tapping) for greater sensitivity in HIV. The neuropsychological battery tapped 

multiple domains including memory, executive function, psychomotor speed, visuospatial 

and motor abilities, and attention. A proxy informant interview was completed by a trained 

technician using the Clinical Dementia Rating scale (CDR) [Morris (1993)].

All samples were reviewed in consensus conference meetings that included a behavioral 

neurologist, an HIV specialist and a neuropsychologist. This team was expert at 

distinguishing Alzheimers Disease from other disorders as it also reviewed cases for the 

UCSF Alzheimers Disease Research Center on a ragular basis. Alzheimers disease criteria 

and HAND criteria (guided by 2007 (Frascati) criteria [Antinori et al. (2007)]) were applied 

based on history, cognitive testing, neurological examination and functional testing. None of 

the UHES cases had clinical, neurological or cognitive testing consistent with MCI due to 

Alzheimer’s disease.

All HAND subjects had a CDR score of ≤0.5. At baseline, their mean duration of HIV 

infection was 19.6 years, the mean CD4 count was 546, the mean CD4 nadir score was 162, 

94 % of the HAND subjects were taking ART, and for 80 % of them the viral load was 

undetectable. The group of healthy controls was matched to the HAND group with respect 

to age (at baseline), gender, and ’Years between Baseline and Follow-Up’, which was the 

difference in years between the follow-up and baseline visit across the samples of each 

cohort (see also the cohort specific mean and standard deviation listed in Table 1). We 

referred to these data as UHES.

From the ADNI project, we downloaded data of 148 Cognitive Impairment cases, 116 

healthy controls scanned on 3T Siemens machines, and 96 healthy cases scanned on 3T GE 

scanner. Selection criteria were age range of 60 to 70, at least two MRI scanning sessions, 

scanners had to be acquired on a 3T GE scanner or 3T Siemens scanner. With respect to the 

cognitive impaired cases, we further confined the sample set to those with CDR ≤0.5 and 

that were diagnosed with MCI (Early Mild Cognitive Impairment, Mild Cognitive 

Impairment, or Impairment)1. MCI patients reported a subjective memory concern either 

autonomously or via an informant or clinician. They had testing impairment in memory, 

however, they had no significant levels of impairment in other cognitive domains, essentially 

preserved activities of daily living and there were no signs of dementia. HIV infection was 

an exclusion criteria from the ADNI study2. Note, while a small subset of samples of the 

ADNI project received amyloid testing for the diagnosis of Alzheimer’s disease, all cases 

were diagnosed by experts comparable to those in the UHES projects. As shown in Figure 1, 

we then matched the three groups to the HAND cases of the UHES data set with respect to 

age, gender, and time between baseline and follow-up scans. The resulting matched ADNI 

1http://adni.loni.usc.edu/study-design/background-rationale
2http://adni.loni.usc.edu/wp-content/uploads/2013/09/DOD-ADNI-IRB-Approved-Final-protocol-08072012.pdf
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data set used for our analysis consisted of 80 MCI, 18 controls scanned on 3T Siemens, and 

8 controls scanned on 3T GE machines.

Data acquisition

All MRIs were acquired on 3T scanners. For the UHES data, a Siemens Megnetom Trio Tim 

scanner acquired a magnetization-prepared 180 degrees radio-frequency pulses and rapid 

gradient-echo (MPRAGE) sequence (TR=2300ms, TI=900ms, TE=2.98 ms, flip angle=9, 

matrix=256×256, FOV=256mm, slice dimensions=1.0 × 1.0 × 1.0mm, 160 slices). All 

ADNI data was acquired using the standardized ADNI acquisition protocol3. 3T Siemens 

scanners acquired a MPRAGE sequence (TR=2300ms, TI=900ms, TE=2.98 ms, flip 

angle=9, matrix=256×256, FOV=256mm, slice dimensions=1.0 × 1.0 × 1.2mm, 160 slices). 

GE scanners acquired an Inversion Recovery-SPoiled Gradient Recalled (IR-SPGR) echo 

sequence (TI=400ms, flip angle=11, matrix=256×256, FOV=240mm, slice dimensions=1.0 

× 1.0 × 1.2mm, 200 slices).

Image Processing

Image processing involved bias field correction via the Computational Morphometry Toolkit 

(CMTK) [Rohlfing (2009)]. Skull stripping was the result of majority voting [Rohlfing et al. 

(2004)] applied to the maps extracted by the Robust Brain Extraction (ROBEX) method 

[Iglesias et al. (2011)], FSL BET [Smith (2002)] and AFNI [Cox (1996)] from the native 

and bias field corrected T1-weighted images. Based on the SRI24 longitudinal analysis 

platform [Sullivan et al. (2011a)], the follow-up, biased-corrected T1-weighted image was 

non-rigidly registered to the corresponding baseline scan using the non-rigid deformation 

between the skull-stripped images as initialization and coarse deformation field for 

encoding. Afterwards, the volumes of supratentorial (svol), ventricular, cortical and 

cerebellar structures were extracted from the images, where the regions of interest (ROIs) 

were defined according to the non-rigidly aligned SRI24 atlas [Rohlfing et al. (2010)]. For 

each subject, this process resulted in 206 volume scores describing the corresponding brain 

morphometry across both time points.

Identifying Disease Specific Patterns

From those regional volume scores, we automatically extracted patterns separating HAND 

from MCI measuring their significance via five-fold cross validation. Each fold of the cross-

validation was composed of 20% of the MCI cases, 20% of the ADNI controls scanned 

under GE, 20% of the ADNI controls scanned under Siemens, 20% of the UHES controls, 

and 20% of the HAND cases. With respect to each fold, we first harmonized the data to 

reduce the potential effect on pattern extraction due to differences between the ADNI and 

UHES data set associated with acquisition, demographics (e.g., gender or age) or healthy 

morphometric variation (i.e., svol at baseline). We then extracted the patterns from the 

harmonized scores via our group-cardinality constrained, logistic regression solver [Zhang et 

al. (2016)]. Finally, we computed the accuracy and significance of the method and 

corresponding patterns. We now briefly describe our approach with the mathematical details 

3see http://adni.loni.usc.edu/methods/documents/mri-protocols/ for further detail
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given in the Appendix. The logistic regression software used for this analysis can be 

downloaded via https://dx.doi.org/10.6084/m9.figshare.3398332 or its current version via 

https://github.com/sibis-platform/PDLG.

We harmonized the regional volume scores by fitting a linear regression model to the 

baseline and follow-up measures of the controls of the training data and then computing the 

residual by applying the model to all samples. Measuring the quality of the residuals in 

harmonizing the volume scores was defined with respect to the null hypothesis that our 

group-sparsity constrained logistic regression model was not better than chance in correctly 

assigning healthy controls to the two data sets. Testing of the null hypothesis will be 

reviewed at the end of this section.

Next, we applied our algorithm for logistic regression problems constrained by group-

cardinality [Zhang et al. (2016)] to the residual volume scores. Logistic regression identified 

the residual volume scores, i.e., ROIs, relevant for distinguishing the two diseases while the 

group-cardinality encoded constraints specific to our proposed application. Specifically, we 

note that the change between baseline and follow-up scores of the same ROI and subject was 

small, i.e., highly correlated (r=0.93). In addition, current medical literature is consistent in 

reporting absence of asymmetry in the disease effects on brain anatomy. Thus, we assumed 

that a residual score specific to a single time point and brain hemisphere was less 

informative for distinguishing the two diseases than the group of scores of that ROI across 

time points and hemispheres. Combining residual scores of ROI’s left and right hemisphere 

at baseline and follow-up resulted in 52 groups. From those 52 groups, our method selected 

subsets, which we also refer to as patterns, as most informative with respect to 

distinguishing MCI from HAND. Note, this sparsity model is motivated by the specific 

experimental setup forcing our method to select all residual scores associated with a region 

(across both hemispheres and time) or not. One might choose a different grouping of scores 

when studying other image features or diseases, such as for disorders asymmetrically 

impacting brain morphometry a non-bilateral grouping would be more suitable.

To avoid biases introduced in our findings by manually fixing the size ‘g’ of the pattern, i.e., 
the only parameter to be set in our approach, we automatically determined ‘g’ via parameter 

exploration confined to the residual scores of the MCI and HAND cases of the training set. 

We defined the parameter space of g by selecting values between the smallest pattern 

(consisting of more than one group) and 33% of the groups, i.e., g ∈ {2, 3, …, 17}. For each 

parameter g, we defined a group-cardinality constrained logistic regressor by computing the 

optimal patterns (i.e., weights  of the regressor - see Appendix for definition). We 

computed the normalized accuracy (nAcc) of each regressor (or pattern) with respect to 

correct assignment of the disease training data to the UHES or ADNI data set, i.e., we 

separately computed the accuracy for each cohort and then averaged their values to account 

for the imbalance in cohort size. On our training data, parameter exploration did not return a 

single optimal cardinality setting as the training accuracy of multiple regressors was 100%. 

We instead combined all regressors into a single ensemble of classifiers [Rokach (2010)] 

using the nAcc score of each regressor as the weight of the regressor in the final decision of 

the ensemble. In other words, the ensemble determined the label of a subject by the 
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weighted average across the set of regressors, all of which were unique with respect to the 

group-cardinality constraint. Once trained, we computed the residual scores of all the test 

subjects (control and disease) and recorded the ensemble’s assignment of the test sample to 

the ADNI or UHES data set.

After testing each fold, we computed the nAcc score of our approach in correctly assigning 

the diseased cohorts of the test data to the ADNI or UHES data set. We also computed the p-

value of the ensembles by applying the two-sided Fisher Exact Test [Fisher (1935)] to the 

corresponding confusion matrix. This calculation tested the null hypothesis that a classifier 

is not better than chance in correctly assigning samples to the two data sets. We repeated 

those computations for the controls. If the p-value associated with the disease cohorts were 

significant (p ≤ 0.001) and non-significant for the controls, then we interpreted the results 

generated by our approach as being informative with respect to separating HAND cases 

from those with MCI and impartial to difference between ADNI and UHES data.

In this scenario, we viewed patterns highly informative for separating the two cohorts as 

those who were part of the patterns identified by a majority of applicable regressors. As 

patterns extracted by regressors with larger cardinality constraints could not be sub-patterns 

of those extracted by regressors with smaller cardinality constraints, we defined the number 

of applicable regressors as those whose cardinality constraint was at last as high as the size 

of the pattern. Finally, we computed the frequency of appearance of each pattern, i.e., the 

number of times a pattern was part of ones extracted by regressors divided by the number of 

applicable regressors, and focused further analysis on those with frequency above 50%.

Regions not selected by our approach could still be affected by either disorder. Exclusion of 

a region by our method indicated that the region did not contain adequate complementary 

information to enhance the identified pattern. Nonetheless, that hypothetical region could be 

part of another pattern distinguishing MCI from HAND, although that pattern might not be 

so robust as the one identified by our approach; alternatively, inclusion of that region might 

expand the size of the pattern beyond that permitted by the sparsity constraint model.

Results

We tested the proposed approach by comparing the corresponding accuracy scores and p-

values to alternative approaches.

Classification Results

Table 2 summarizes the nAcc scores of applying our approach to the original volume scores 

(omitting harmonization) and the residual volume scores (with harmonization). The table 

specifies those scores with respect to distinguishing the disease cohorts and the controls 

from both data sets. Furthermore, the table shows the results of training and testing the 

regression model with three different data configurations: one just on the baseline score (T = 

1), one just on the follow-up data (T = 1), and one using the data from both time points (T = 

2) (as proposed in the previous section). Scores in bold refer to the experiments in which p-

values were significantly different (p ≤ 0.001) from randomly assigning samples to each data 

set.
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When omitting data harmonization, the ensemble was more accurate in distinguishing the 

controls than the disease from both data sets. The opposite was true when applying our 

approach to the (harmonized) residual scores. Now, the scores in distinguishing the control 

groups from both data sets were not statistically significant, while separating cases of 

HAND from MCI was significant for those experiments including measurements from 

follow-up visits. Distinguishing HAND from MCI relying solely on the follow-up measures 

resulted in an nAcc score of 81.5% (vs. 64.2% when only using baseline measures). 

Combining baseline and follow-up measurements resulted in the most accurate separation 

(88.1%) between the two cohorts while the accuracy in distinguishing the control groups 

(61.4%, p-value=0.1) was within the range defined by the two cross-sectional experiments.

Pattern Analysis

We now further review the patterns obtained by the most accurate ensemble, which was 

based on residual scores of the baseline and follow-up visits of all 102 regions. In our 

experiment, the ensembles of classifiers identified 78 unique patterns, whose frequencies 

were plotted in Figure 2. Of those, the frequency of 8 patterns were above 50%. The 8 

patterns comprised 8 bilateral regions (see also Figure 3): medial orbitofrontal cortex, 

cerebellum VIII, parahippocampal gyrus, precuneus, superior temporal pole, precentral 

gyrus, cerebellum VIIb, and inferior temporal gyrus.

If we reduced the threshold to patterns with frequency above 20%, i.e., the frequency before 

the curve in Figure 2 flattens out, then 9 more patterns were included in the analysis. 

However, these extra patterns only contained two more regions: fusiform cortex and 

postcentral gyrus. These two regions appeared only once across those patterns and across all 

patterns no more than 25 times, which was much fewer than the appearance of any of the 

other 8 regions (46 to 71 times). We concluded that the first 8 patterns with the associated 8 

regions were most relevant with respect to distinguishing HAND from MCI.

Table 3 lists the 8 selected regions in the order of their number of appearances across all 78 

patterns, the regions associated with each pattern, and the accuracy of each pattern (last two 

rows) and region (last two columns) in distinguishing the cohorts. For each region and 

pattern, we computed the accuracy and p-value (two-sided Fischer Exact Test) via five-fold 

cross-validation of the logistic regression (without any cardinality constraints) applied to the 

corresponding residual scores.

The p-value in distinguishing the controls of the two data sets was not significant (i.e., p > 
0.001) for any pattern or region. By contrast, all patterns except Pattern 7 were significant in 

distinguishing the disease groups, whereas the disease specific classification accuracy for 

regions was never higher than 68.1%, the lowest accuracy across all patterns was 68.3% for 

Pattern 7 and the highest was 90.8% for Pattern 3. The 3 patterns with the highest accuracy 

(Pattern 3,5,6) were also the only ones that included the 3 regions most frequently identified: 

the medial orbitofrontal cortex, cerebellum VIII, and parahippocampal gyrus. Interestingly, 

our experiments relying on just each region individually reported non-significant p-values 

with respect to distinguishing the two disease cohorts. The three regions that resulted in 

significant p-values were the cerebellum VIIb, precuneus, and inferior temporal gyrus. The 

remaining 2 of the 8 regions identified by the top 8 patterns, the superior temporal pole and 
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the precentral gyrus, neither had significant p-values nor emerged as part any of the top three 

patterns.

Morphometric Analysis

To compare our findings on the 8 regions with more conventional morphometric volumetric 

analysis, we parameterized the linear regression model of Section Data Harmonization based 

on the baseline volume scores of all controls and computed the residuals for all volume 

scores (including disease and follow-up visit). For each of the 8 regions, we computed the 

slopes between follow-up and baseline residual scores. Table 4 lists the corresponding p-

values when applying the Mann-Whitney U test [Mann and Whitney (1947)] to those slopes. 

Entries in bold were significantly different (p ≤ 0.001) between the corresponding cohorts. 

For those regions, Figure 4 showed the box plots of the slopes based on the residual volume 

scores for all cohorts.

The trajectory for none of the regions was significantly different between MCI and controls. 

However, the trajectories of 3 regions were significantly different for HAND vs. MCI (right 

cerebellum VIIb, right cerebellum VIII, left precentral) and HAND vs. controls (left 

precuneus, right precentral, right cerebellum VIIb). For these regions, subjects with HAND 

aged significantly faster than the corresponding other cohorts (see also Figure 4). For the 

other regions, the residual scores regressed much faster for the HAND cases than the other 

groups. However, the change was not significant. The cerebellum VIIb was the only region 

that significantly distinguished HAND from MCI and HAND from controls. It was also the 

only region that overlapped with the significant findings of the region specific classification 

of the previous section.

Discussion

Without data harmonization, the classifier encoded differences in data collection between the 

ADNI and the UHES data set as it was more accurate in distinguishing controls than disease 

groups. This was not the case for the classifier based on the (harmonized) residual scores, 

which identified patterns distinguishing HAND from MCI on a significant level while not 

being significantly affected by differences in data collection (for experiment based on 

baseline and follow-up p = 0.1). Identifying such a bias in our patterns would require 

reapplying our method to a larger data set. Based on our experience from Zhang et al. (2016) 

and the results of Table 2, training our approach on a larger data set generally increases its 

accuracy in distinguishing MCI from HAND, i.e., results in improved patterns. These 

improved patterns might also bring the accuracy associated with the control groups closer to 

50%, which would then confirm again that our analysis is unbiased towards differences in 

data collection between the two sets.

When relying solely on follow-up scores, the accuracy in distinguishing HAND from MCI 

was higher than just based on the ones for the baseline scans reflecting the understanding 

that the underlying patterns were more distinct as both degeneration progressed. Combining 

baseline and follow-up measures resulted in the most accurate separation, which was 

significantly better (p < 0.001) than solely relying on the baseline scores according to the 

Delongs test [DeLong et al. (1988)]. These findings underline the strength of trajectories 
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extracted from the longitudinal analysis over cross-sectional volume scores in identifying 

differences between HAND and MCI. Our experiments also showed that each of the 8 

highest ranked patterns was also more informative in differentiating cases of HAND from 

MCI than each of the 8 regions associated with those patterns as the disease specific 

classification accuracy of the patterns was always higher than the accuracy scores of any 

single region. In other words, the significance of the identified image biomarkers, i.e., 
patterns, for distinguishing MCI from HAND is much higher than differences based solely 

on the individual regions within those patterns.

Of the 3 most frequently identified regions (medial orbitofrontal cortex, cerebellum VIII, 

and parahippocampal), the medial orbitofrontal cortex, which is involved in the cognitive 

processing of decision-making, had been found to be abnormally small in MCI and 

Alzheimer’s patients 4 years before the occurrence of any cognitive symptoms [Tondelli et 

al. (2012)]. Nothing had been reported on the role of MCI on the cerebellum VIII or more 

generally the cerebellum, which is known to subserve motor tasks and likely be involved in 

selective cognitive functions commonly associated with the frontal lobe functions 

[Schmahmann and Pandya (2008)]. However, in comparison to healthy controls, higher 

atrophy rates in the cerebellum have been published for HIV+ [Klunder et al. (2008); 

Elsheikh et al. (2010); Chang et al. (2011); Sullivan et al. (2011b)]. Finally, heightened 

atrophy in the parahippocampal gyrus, which contributes to memory encoding and retrieval, 

has been reported in HIV+ [Maki et al. (2009); Wilson et al. (2015)] and MCI cohort [Pantel 

et al. (2003)].

Next, we reviewed the literature for the three regions associated with significant p-values, 

i.e., cerebellum VIIb, precuneus, and inferior temporal gyrus. Whereas volume deficits of 

the cerebellum VIIb had not been associated with the functional deficits of HAND or MCI, 

we noted above the higher atrophy rates in the cerebellum of HIV+ subjects. The precuneus, 

however, which is associated with episodic memory and consciousness, is one of the few 

structures known to atrophy faster in MCI subjects than healthy controls [Tondelli et al. 

(2012); Pihlajamaki et al. (2009)]. The inferior temporal gyrus has also been reported to 

have higher atrophy rates in MCI and HIV exhibiting cognitive decline [Küper et al. (2011); 

McDonald et al. (2012)]. This region is associated with high level visual processing, such as 

the shape recognition [Martin et al. (1996)]. Finally, the regions that neither had significant 

p-values nor emerged as part any of the top three patterns, i.e., the superior temporal pole 

and the precentral gyrus, were also the only regions where neither MCI nor HIV had been 

associated significant volume deficits.

From our morphometric analysis on those 8 regions, we concluded that the patterns found by 

our logistic regression approach were mostly influenced by HAND as significant differences 

in regional trajectories could only be found in group comparisons including this disease. 

With respect to at least one hemisphere of 4 regions, HAND had significantly faster tissue 

loss than the other cohorts (see also Figure 4). These findings were not only consistent with 

the medical literature but also with the diminished function observed in HAND samples. The 

cerebellum VIIb was the only region where the significant findings of the morphometric 

analysis agreed with those of the logistic classifier. We thus concluded that common 

morphometric analysis might not directly translate to decision making on an individual 
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subject level. To investigate this possibility further, we computed the p-value of all 102 

regions. We then trained a logistic regressor on those 14 regions, whose slope was 

significantly different between MCI and HAND at least for one hemisphere. The 14 regions 

were the middle frontal gyrus, rolandic operculum, anterior cingulate gyrus, calcarine 

sulcus, lingual gyrus, middle occipital, fusiform gyrus, inferior parietal lobule, angular 

gyrus, transverse temporal gyri, crus I of cerebellar hemisphere, crus II of cerebellar 

hemisphere, lobule VIIB of cerebellar hemisphere, and lobule VIII of cerebellar hemisphere. 

Five-fold cross-validation resulted in a nAcc scores of 73.8% for distinguishing HAND from 

MCI, whereas for the control group it was 56.1%. In comparison, when we trained the 

classifier on the 8 regions selected by the 8 top patterns, then the accuracy increased to 

94.8% for distinguishing the disease cohorts while the accuracy dropped to 47.5% for the 

control groups. These results underline the importance of selecting patterns of regions (as it 

was done by our group cardinality constrained logistic regressor) instead of individual 

regions when separating HAND from MCI.

Conclusion

We proposed a group sparsity constrained logistic classifier to identify morphometric 

patterns separating HAND from MCI in patients between the ages of 60 and 70. Confining 

classifiers to sparsity constrained solutions has been popular in medical image analysis as 

they reduce the risk of overfitting of the classifier on small sample sizes, which is a common 

characteristic for neuroimaging studies. These classifiers approximated the sparse solution 

by changing the underlying regularization from counting non-zero weights via the l0-’norm’ 

to analyzing the weights’ absolute values by applying the l1-norm or, in case of group 

sparsity constrained problems, the l2-norm. These approximations have brought in question 

the resulting solutions with respect to the original problem. We therefore suggested herein an 

algorithm that directly solves the original, sparse problem.

We applied our proposed classifier to a data set containing 15 cases of HAND provided by 

the UHES study and 80 age matched MCI cases downloaded from the ADNI project. Using 

cross-validation, we trained a linear model on healthy controls of both studies to harmonize 

the volumetric scores for demographic and acquisition differences across the two data sets 

while preserving disease specific pattern distinguishing HAND from MCI. We identified 

patterns of various sizes by training our proposed group sparsity constrained logistic 

classifier on samples of both diseases. During testing, we then showed that data 

harmonization was successful as the accuracy of those patterns was non-significant in 

assigning healthy controls to the correct data set. However, the patterns were significant in 

correctly assigning disease cases to HAND or MCI with the longitudinal study design being 

more accurate than the cross-sectional analysis.

The most frequently identified patterns were composed of a total of 8 regions. Our findings 

were largely in line with the literature, which reported on some of these regions as having 

measured volume deficits in HIV subjects, being significant for characterizing the early 

onset of MCI, or predicting subjects with MCI converting to Alzheimer’s’ disease. 

Furthermore, our morphmetric group analysis revealed that HAND had significantly faster 

tissue loss than MCI or controls in at least one hemisphere in half of those regions, i.e., the 
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right cerebellum VIIb, right cerebellum VIII, and left precentral with respect to MCI and the 

left precuneus, right precentral, right cerebellum VIIb with respect to controls.

Using morphometric group analysis to individually select regions resulted in a pattern that 

was larger in size and less informative than the most frequently identified patterns by our 

proposed approach. We therefore conclude that simultaneously analyzing all brain regions 

and time points for disease specific patterns, as done by our group sparsity constrained 

logistic classification, enhances the ability to distinguish HAND from cognitive impairment 

found in the non-HIV infected population, such as the MCI cohort.
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Appendix: Model and Numerical Solution to Pattern Extraction

We extracted patterns separating HAND from MCI by first applying logistic regression 

constrained by group-cardinality [Zhang et al. (2016)] to harmonized volume scores. We 

harmonized the regional volume scores via linear regression. For each ROI ‘i’, the linear 

regression model was defined by the following factors for subject ‘s’ at time point t: the 

volume score , the baseline svol score ,  and  encoding the acquiring 

scanner (see Table 5 for details), and the age at scanning . More specifically, the 

following linear regression model was fitted to the control group:

(1)

Based on this fitting, the residuals were computed for all subjects (including those with MCI 

or HAND)

(2)
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Based on the residual volume scores , our group-cardinality constrained logistic 

regression model aims to automatically identify the regional patterns distinguishing the two 

diagnosis. To define the model, we assumed (without loss of generality) training of the 

model was based on N = 76 samples of the MCI and HAND cases. {b1;…, bN} encoded the 

assignment of the N samples to the two data sets, where bs ∈ {−1, +1} was +1 if subject ‘s’ 

was a part of UHES, i.e., HAND, and −1 otherwise. The input of the model were the 

residual volume scores

of R = 102 ROIs extracted over T = 2 timepoints. Combining rs with bs, we defined the label 

weighted feature vectors as: = bs·rs. The model then encoded the influence of each element 

in as in correctly classifying the subject ‘s’ via the weight vector ‘w’.

To determine the optimal  with respect to separating the two cohorts while being consistent 

across time and hemisphere, we coupled with each ROI  a group , which consisted of the 

indexes associated with the ROI’s left and right hemisphere at baseline and follow-up. This 

resulted in M = 52 groupings {G1,…, GM}. We then used those groupings to define , the 

subvector of w indexed by , and , the l2-norm of that grouping. Based on those 

definitions, the group cardinality of w was then simply the number of nonzero components 

of

(3)

which was formally determined via the l0-“norm” . For our model to identify 

meaningful patterns, we further assumed that no more than g ∈ ℕ groups with g ≤ M 
differentiate cases of HAND from MCI, i.e.,

(4)

Having defined the group cardinality constraint, we assumed that the optimal  was the 

result of minimizing the average logistic loss function, which, for label weight scalar v and 

w, was defined as

(5)

with

(6)
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being the logistic function. In other words, our model was fully described by the following 

minimization problem

(7)

Alternatively to choose ROIs across time and hemispheres, one could have selected 

individual residual volume scores of w by replacing  with . The result would have 

been a sparse logistic regression model, which, however ignored our early assumptions of 

the dependency of regional scores across time and hemispheres.

We defined a possible pattern for distinguishing the two diseases as the set of ROIs whose 

corresponding values in  were non-zero. In other words, we were only interested in ROIs 

selected by our model rather than the absolute values of , which, according to [Haufe et al. 

(2014); Sabuncu (2014)], should not be used to study the impact of diseases on brain 

anatomy. To find a numerical solution for , we computed a local minimum to Eq. (7) 

according to [Zhang et al. (2016)] by decoupling the minimization of lavg(·, ·) from the 

sparsity constraint

Specifically, we introduced the auxiliary variable  as an unconstrained 

approximation to the sparse solution  by rewriting Eq. (7) as

(8)

We iteratively solved Eq. (8) via penalty decomposition (PD), i.e., we approximated 

via the local minimum of the following non-convex problem defined with respect to the 

penalty parameter ϱ > 0:

(9)

Initializing ϱ at 0.1 (according to [Lu and Zhang (2013)]), PD iterated between determining 

a local minimum of the above equation via Block Coordinate Descent (BCD) and increased 

ϱ by a factor of  (set according to [Lu and Zhang (2013)]) until convergence, i.e.,

(10)

which was the termination criterion for PD suggested in [Lu and Zhang (2013)].
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BCD alternated between minimizing Eq. (9) with fixed w and by fixing v and y. When w 
was set to w′, finding the minimum with respect to v and y turned into solving the smooth 

and convex problem

(11)

via gradient descent. In turn, minimizing the objective function just with respect to w, i.e.,

(12)

could now be solved in closed form. To do so, we sorted  in descending order and 

recorded the order of the indexes as {j1, … jM}, i.e.,

(13)

From Eq. (12), w′ had to be equal to y′ for the first ‘g’ groups and otherwise zero, i.e., 

 for i ≤ r and otherwise .4 In theory, this solution was not unique as it 

could happen that  so that an alternative solution was defined by 

 for i ≤ r,  and otherwise . However, we had not 

experienced this issue in practice.

Proving the convergence of PD to a local minimum of Eq. (7) was non-trivial (see also 

[Zhang et al. (2016)]) as Eq. (9) required a search within the group-sparsity constrained 

space , which was non-convex and non-continuous. However, one could generalize the 

findings of [Lu and Zhang (2013)] to group sparsity to gain a better understanding of the 

convergence properties of the approach. Specifically, at each iteration of PD, the BCD 

approach generated a sequence of w′. Assuming that the sequence converged to an 

accumulation point , then  was also a local minimum of Eq. (11). Furthermore, PD 

produced a sequence of . If the sequence converged to an accumulation point  and 

 then  was a local minimum of Eq. (7). In our experiments, these conditions 

where always fulfilled so that convergence of our implementation was not an issue and 

proving convergence for the more general case of  was not needed. Also note, 

our algorithm can only determine a local solution, we showed in Zhang et al. (2016) that this 

local solution is superior to the global solution of an existing method that relaxes the group 

sparsity constraint.

4The proof was provided by the supplemental information of [Zhang et al. (2016)].
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Figure 1. 
Matching demographic of cohorts of the ADNI and UHES data set to the HAND samples.
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Figure 2. 
Frequency of patterns across all regressors of the ensemble
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Figure 3. 
3D models of the selected regions.

Zhang et al. Page 25

Hum Brain Mapp. Author manuscript; available in PMC 2017 December 01.

A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript



Figure 4. 
The slopes of the residual scores for regions with significant p-value.
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Table 2

Accuracy scores in % for different implementations.

Implementation Set Baseline Follow-Up Baseline + Follow-Up

Original Volume Scores (no harmonization)
Disease 73.8% 70.8% 77.7%

Control 82.8% 77.6% 79.9%

Residual Scores (with harmonization)
Disease 64.2% 81.5% 88.1%

Control 61.8% 60.9% 61.4%

Scores in bold refer to experiments in which p-values were significantly different (p ≤ 0.001) from randomly assigning samples to each data set.

Hum Brain Mapp. Author manuscript; available in PMC 2017 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 29

Ta
b

le
 3

Pa
tte

rn
s 

w
ith

 th
ei

r 
re

la
tiv

e 
fr

eq
ue

nc
y 

be
in

g 
ab

ov
e 

50
%

.

R
eg

io
ns

%
 o

f 
A

pp
ea

rn
.

P
at

te
rn

s
nA

cc
(%

)

1
2

3
4

5
6

7
8

D
is

.
C

tr
.

m
ed

ia
l o

rb
ito

fr
on

ta
l c

or
te

x
8.

8
x

x
x

x
x

64
.8

54
.8

ce
re

be
llu

m
 8

83
.8

x
x

x
x

x
x

61
.5

51
.4

pa
ra

hi
pp

oc
am

pa
l g

yr
us

75
.0

x
x

x
x

x
52

.1
50

.0

pr
ec

un
eu

s
75

.0
x

x
x

x
65

.4
50

.5

su
pe

ri
or

 te
m

po
ra

l p
ol

e
66

.3
x

x
58

.8
48

.5

pr
ec

en
tr

al
 g

yr
us

62
.5

x
63

.5
55

.2

ce
re

be
llu

m
 7

b
62

.5
x

x
x

68
.1

53
.8

in
fe

ri
or

 te
m

po
ra

l g
yr

us
57

.5
x

65
.4

57
.1

nA
cc

 f
or

 D
is

ea
se

 g
ro

up
s 

(%
)

70
.2

70
.8

90
.8

76
.3

87
.5

88
.1

68
.3

70
.2

nA
cc

 f
or

 C
on

tr
ol

 g
ro

up
s(

%
)

54
.8

51
.8

44
.6

53
.3

44
.1

52
.3

53
.8

54
.2

Sc
or

es
 in

 b
ol

d 
re

fe
rr

ed
 to

 th
e 

ex
pe

ri
m

en
ts

 w
ho

se
 p

-v
al

ue
s 

w
er

e 
si

gn
if

ic
an

t (
p 

≤ 
0.

00
1)

.

Hum Brain Mapp. Author manuscript; available in PMC 2017 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 30

Ta
b

le
 4

p-
va

lu
es

 o
f 

M
an

n-
W

hi
tn

ey
 U

 te
st

s 
ba

se
d 

on
 v

ol
um

e 
ch

an
ge

 (
sl

op
e)

.

R
eg

io
ns

H
A

N
D

 v
s.

 M
C

I
H

A
N

D
 v

s.
 C

on
tr

ol
M

C
I 

vs
. C

on
tr

ol

L
ef

t
R

ig
ht

L
ef

t
R

ig
ht

L
ef

t
R

ig
ht

m
ed

ia
l o

rb
ito

fr
on

ta
l c

or
te

x
0.

08
4

0.
00

3
0.

03
8

0.
00

5
0.

77
0

0.
81

3

ce
re

be
llu

m
 8

0.
08

2
<0

.0
01

0.
28

5
0.

00
5

0.
24

6
0.

10
8

pa
ra

hi
pp

oc
am

pa
l g

yr
us

0.
03

4
0.

98
8

0.
02

8
0.

17
8

0.
52

4
0.

03
1

pr
ec

un
eu

s
0.

00
3

0.
04

3
<0

.0
01

0.
01

0
0.

41
7

0.
60

9

su
pe

ri
or

 te
m

po
ra

l p
ol

e
0.

29
5

0.
01

0
0.

11
8

0.
00

2
0.

38
1

0.
38

6

pr
ec

en
tr

al
 g

yr
us

0.
00

1
0.

00
2

0.
00

5
0.

00
1

0.
53

7
0.

75
5

ce
re

be
llu

m
 7

b
0.

01
5

<0
.0

01
0.

00
5

0.
00

1
0.

25
4

0.
06

6

in
fe

ri
or

 te
m

po
ra

l g
yr

us
0.

00
3

0.
01

0
0.

00
3

0.
02

0
0.

86
3

0.
61

6

V
al

ue
s 

in
 b

ol
d 

w
er

e 
si

gn
if

ic
an

t (
p 

≤ 
0.

00
1)

.

Hum Brain Mapp. Author manuscript; available in PMC 2017 December 01.



A
uthor M

anuscript
A

uthor M
anuscript

A
uthor M

anuscript
A

uthor M
anuscript

Zhang et al. Page 31

Table 5

Encoding for scanners.

Scanner

ADNI Siemens 0 1

ADNI GE 1 0

UHES Siemens 0 0
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